A review on statistical inference methods for discrete Markov random fields

2017 
Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    12
    Citations
    NaN
    KQI
    []