Synthesis and characterization of Bi1 − xNdxFeO3 thin films deposited using a high throughput physical vapour deposition technique

2013 
The high throughput synthesis of BiFeO3 and rare earth doped BiFeO3 films using a modified molecular beam epitaxy technique is reported. Optimum conditions for deposition have been established and compositionally graded Bi(1 ? x)NdxFeO3 (x = 0.08 to 0.24) thin films have been fabricated on platinised silicon substrate (Si/SiO2/TiO2/Pt) with the aim of finding the optimum Nd dopant concentrations for enhanced piezoelectric properties. For x 0.20, the structure and symmetry were consistent with the NdFeO3 end member (Pnma). For compositions 0.12 < x < 0.2, a gradual transition from R3c to Pnma was observed via a mixed phase region but no compositional interval could be unambiguously identified in which the intermediate PbZrO3-like structure, reported by Karimi et al. (2009), existed as a single phase. Piezoresponse force microscopy remanent hysteresis measurements of the film revealed a statistical increase in the piezoelectric response at x ? 0.11 within the R3c region adjacent to the mixed phase field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    6
    Citations
    NaN
    KQI
    []