Optimizing quantum optimization algorithms via faster quantum gradient computation

2019 
We consider a generic framework of optimization algorithms based on gradient descent. We develop a quantum algorithm that computes the gradient of a multi-variate real-valued function f : Rd → R by evaluating it at only a logarithmic number of times in superposition. Our algorithm is an improved version of Jordan's gradient computation algorithm [28], providing an approximation of the gradient ▽f with quadratically better dependence on the evaluation accuracy of f, for an important class of smooth functions. Furthermore, we show that objective functions arising from variational quantum circuits usually satisfy the necessary smoothness conditions, hence our algorithm provides a quadratic improvement in the complexity of computing their gradient. We also show that in a continuous phase-query model, our gradient computation algorithm has optimal query complexity up to poly-logarithmic factors, for a particular class of smooth functions. Moreover, we show that for low-degree multivariate polynomials our algorithm can provide exponential speedups compared to Jordan's algorithm in terms of the dimension d.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []