ASYMPTOTIC ANALYSIS OF SKOLEM’S EXPONENTIAL FUNCTIONS
2022
Skolem (1956) studied the germs at infinity of the smallest class of real valued functions on the positive real line containing the constant
$1$
, the identity function
${\mathbf {x}}$
, and such that whenever f and g are in the set,
$f+g,fg$
and
$f^g$
are in the set. This set of germs is well ordered and Skolem conjectured that its order type is epsilon-zero. Van den Dries and Levitz (1984) computed the order type of the fragment below
$2^{2^{\mathbf {x}}}$
. Here we prove that the set of asymptotic classes within any Archimedean class of Skolem functions has order type
$\omega $
. As a consequence we obtain, for each positive integer n, an upper bound for the fragment below
$2^{n^{\mathbf {x}}}$
. We deduce an epsilon-zero upper bound for the fragment below
$2^{{\mathbf {x}}^{\mathbf {x}}}$
, improving the previous epsilon-omega bound by Levitz (1978). A novel feature of our approach is the use of Conway’s surreal number for asymptotic calculations.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI