SSBM: A signed stochastic block model for multiple structure discovery in large-scale exploratory signed networks

2023 
Signed network structure discovery has received extensive attention and has become a research focus in the field of network science. However, most of the existing studies are focused on the networks with a single structure, e.g., community or bipartite, while ignoring multiple structures, e.g., the coexistence of community and bipartite structures. Furthermore, existing studies were faced with challenge regarding large-scale signed networks due to their high time complexity, especially when determining the number of clusters in the observed network without any prior knowledge. In view of this, we propose a mathematically principled method for signed network multiple structure discovery named the Signed Stochastic Block Model (SSBM). The SSBM can capture the multiple structures contained in signed networks, e.g., community, bipartite, and coexistence of them, by adopting a probabilistic model. Moreover, by integrating the minimum message length (MML) criterion and component-wise EM (CEM) algorithm, a scalable learning algorithm that has the ability of model selection is proposed to handle large-scale signed networks. By comparing state-of-the-art methods on synthetic and real-world signed networks, extensive experimental results demonstrate the effectiveness and efficiency of SSBM in discovering large-scale exploratory signed networks with multiple structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []