Neural Architecture Search with Random Labels

2021 
In this paper, we investigate a new variant of neural architecture search (NAS) paradigm – searching with random labels (RLNAS). The task sounds counter-intuitive for most existing NAS algorithms since random label provides few information on the performance of each candidate architecture. Instead, we propose a novel NAS framework based on ease-of-convergence hypothesis, which requires only random labels during searching. The algorithm involves two steps: first, we train a SuperNet using random labels; second, from the SuperNet we extract the subnetwork whose weights change most significantly during the training. Extensive experiments are evaluated on multiple datasets (e.g. NAS-Bench-201 and ImageNet) and multiple search spaces (e.g. DARTS-like and MobileNet-like). Very surprisingly, RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []