Bayesian inference of human bone sample properties using ultrasonic reflected signals

2020 
The non-intrusiveness and low cost of ultrasonic interrogation is motivating the development of new means of detection of osteoporosis and other bone deficiencies. Bone is a porous media saturated with a viscous fluid and could thus be well characterized by the Biot model. The main purpose of this work is to present an in vitro methodology for the identification of the properties and structural parameters of the bone, adopting a statistical Bayesian inference technique using ultrasonic reflected signals at normal incidence. It is, in this respect, a companion paper to a previous work [J. Acoust. Soc. Am. 146, 3 (2019), pp. 1629–1640], where ultrasonic transmitted signals were considered. This approach allows the retrieval of some important parameters that characterize the bone structure and associated uncertainties. The method was applied to seven samples of bone extracted from femoral heads, immersed in water, and exposed to ultrasonic signals with a center frequency of ≈ 500   kHz. For all seven samples, signals at different sites were acquired to check the method robustness. The porosity, pore mean size and standard deviation, and the porous frame bulk modulus were all successfully identified using only ultrasonic reflected signals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []