Bayesian Gabor Network With Uncertainty Estimation for Pedestrian Lane Detection in Assistive Navigation

2022 
Automatic pedestrian lane detection is a challenging problem that is of great interest in assistive navigation and autonomous driving. Such a detection system must cope well with variations in lane surfaces and illumination conditions so that a vision-impaired user can navigate safely in unknown environments. This paper proposes a new lightweight Bayesian Gabor Network (BGN) for camera-based detection of pedestrian lanes in unstructured scenes. In our approach, each Gabor parameter is represented as a learnable Gaussian distribution using variational Bayesian inference. For the safety of vision-impaired users, in addition to an output segmentation map, the network provides two full-resolution maps of aleatoric uncertainty and epistemic uncertainty as well-calibrated confidence measures. Our Gabor-based method has fewer weights than the standard CNNs, therefore it is less prone to overfitting and requires fewer operations to compute. Compared to the state-of-the-art semantic segmentation methods, the BGN maintains a competitive segmentation performance while achieving a significantly compact model size (from $1.8\times $ to $237.6\times $ reduction), a fast prediction time (from $1.2\times $ to $67.5\times $ faster), and a well-calibrated uncertainty measure. We also introduce a new lane dataset of 10,000 images for objective evaluation in pedestrian lane detection research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []