PointRas: Uncertainty-Aware Multi-Resolution Learning for Point Cloud Segmentation

2022 
In this paper, we propose an uncertainty-aware multi-resolution learning for point cloud segmentation, named PointRas. Most existing works for point cloud segmentation design encoder networks to obtain better representation of local space in point cloud. However, few of them investigate the utilization of features in the lower resolutions produced by encoders and consider the contextual learning between various resolutions in decoder network. To address this, we propose to utilize the descriptive characteristic of point clouds in the lower resolutions. Taking reference to core steps of rasterization in 2D graphics where the properties of pixels in high density are interpolated from a few primitive shapes in rasterization rendering, we use the similar strategy where prediction maps in lower resolution are iteratively regressed and upsampled into higher resolutions. Moreover, to remedy the potential information deficiency of lower-resolution point cloud, we refine the predictions in each resolution under the criterion of uncertainty selection, which notably enhances the representation ability of the point cloud in lower resolutions. Our proposed PointRas module can be incorporated into the backbones of various point cloud segmentation frameworks, and brings only marginal computational cost. We evaluate the proposed method on challenging datasets including ScanNet, S3DIS, NPM3D, STPLS3D and ScanObjectNN, and consistently improve the performance in comparison with the state-of-the-art methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []