On the Effectiveness of Sentence Encoding for Intent Detection Meta-Learning

2022 
Recent studies on few-shot intent detection have attempted to formulate the task as a meta-learning problem, where a meta-learning model is trained with a certain capability to quickly adapt to newly specified few-shot tasks with potentially unseen intent categories. Prototypical networks have been commonly used in this setting, with the hope that good prototypical representations could be learned to capture the semantic similarity between the query and a few labeled instances. This intuition naturally leaves a question of whether or not a good sentence representation scheme could suffice for the task without further domain-specific adaptation. In this paper, we conduct empirical studies on a number of general-purpose sentence embedding schemes, showing that good sentence embeddings without any fine-tuning on intent detection data could produce a non-trivially strong performance. Inspired by the results from our qualitative analysis, we propose a frustratingly easy modification, which leads to consistent improvements over all sentence encoding schemes, including those from the state-of-the-art prototypical network variants with task-specific fine-tuning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []