Multi-Tone Active Noise Equalizer With Spatially Distributed User-Selected Profiles

2022 
In work we propose a multi-channel active noise equalizer (ANE) that can deal with multi-frequency noise signals and assigns simultaneously different equalization gains to each frequency component at each monitoring sensor. For this purpose, we state a pseudo-error noise signal for each sensor of the ANE, which has to be cancelled out in order to get the desired equalization profiles. Firstly, the optimal analytic solution for the ANE filters in the case of single-frequency noise is provided, and an adaptive algorithm based on the Least Mean Squared (LMS) is proposed for the same case. We also show that this adaptive strategy reaches the theoretical solution in steady state. Secondly, we state an equivalent approach for the case of multi-frequency noise based on two alternatives: a common pseudo-error signal at each sensor for all frequencies, and a different pseudo-error signal at each sensor for each frequency. The analytic and adaptive solutions for the ANE control filters have been developed for both pseudo-error alternatives. Finally, the ability of the proposed ANE to achieve simultaneously different user-selected noise profiles in different locations has been validated by their transfer functions and simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []