{REMIX}: Efficient Range Query for LSM-trees

2021 
LSM-tree based key-value (KV) stores organize data in a multi-level structure for high-speed writes. Range queries on traditional LSM-trees must seek and sort-merge data from multiple table files on the fly, which is expensive and often leads to mediocre read performance. To improve range query efficiency on LSM-trees, we introduce a space-efficient KV index data structure, named REMIX, that records a globally sorted view of KV data spanning multiple table files. A range query on multiple REMIX-indexed data files can quickly locate the target key using a binary search, and retrieve subsequent keys in sorted order without key comparisons. We build RemixDB, an LSM-tree based KV-store that adopts a write-efficient compaction strategy and employs REMIXes for fast point and range queries. Experimental results show that REMIXes can substantially improve range query performance in a write-optimized LSM-tree based KV-store.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []