Fast Roughness Minimizing Image Restoration Under Mixed Poisson–Gaussian Noise

2021 
Image acquisition in many biomedical imaging modalities is corrupted by Poisson noise followed by additive Gaussian noise. While total variation and related regularization methods for solving biomedical inverse problems are known to yield high quality reconstructions in most situations, such methods mostly use log-likelihood of either Gaussian or Poisson noise models, and rarely use mixed Poisson-Gaussian (PG) noise model. There is a recent work which deals with exact PG likelihood and total variation regularization. This method adapts the primal-dual approach involving gradients steps on the PG log-likelihood, with step size limited by the inverse of its Lipschitz constant. This leads to limitations in the convergence speed. Although the alternating direction method of multipliers (ADMM) algorithm does not have such step size restrictions, ADMM has never been applied for this problem, for the possible reason that PG log-likelihood is quite complex. In this paper, we develop an ADMM based optimization for roughness minimizing image restoration under PG log-likelihood. We achieve this by first developing a novel iterative method for computing the proximal solution of PG log-likelihood, deriving the termination conditions for this iterative method, and then integrating into a provably convergent ADMM scheme. We experimentally demonstrate that the proposed method outperform primal-dual method in most of the cases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []