Harmony: Saving Concurrent Transmissions from Harsh RF Interference

2020 
The increasing congestion of the RF spectrum is a key challenge for low-power wireless networks using concurrent transmissions. The presence of radio interference can indeed undermine their dependability, as they rely on a tight synchronization and incur a significant overhead to overcome packet loss. In this paper, we present Harmony, a new data collection protocol that exploits the benefits of concurrent transmissions and embeds techniques to ensure a reliable and timely packet delivery despite highly congested channels. Such techniques include, among others, a data freezing mechanism that allows to successfully deliver data in a partitioned network as well as the use of network coding to shorten the length of packets and increase the robustness to unreliable links. Harmony also introduces a distributed interference detection scheme that allows each node to activate various interference mitigation techniques only when strictly necessary, avoiding unnecessary energy expenditures while finding a good balance between reliability and timeliness. An experimental evaluation on real-world testbeds shows that Harmony outperforms state-of-the-art protocols in the presence of harsh Wi-Fi interference, with up to 50% higher delivery rates and significantly shorter end-to-end latencies, even when transmitting large packets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []