Modeling Inter-station Relationships with Attentive Temporal Graph Convolutional Network for Air Quality Prediction

2021 
Air pollution is an important environmental issue of increasing concern, which impacts human health. Accurate air quality prediction is crucial for avoiding people suffering from serious air pollution. Most of the prior works focus on capturing the temporal trend of air quality for each monitoring station. Recent deep learning based methods also model spatial dependencies among neighboring stations. However, we observe that besides geospatially adjacent stations, the stations which share similar functionalities or consistent temporal patterns could also have strong dependencies. In this paper, we propose an Attentive Temporal Graph Convolutional Network (ATGCN) to model diverse inter-station relationships for air quality prediction of citywide stations. Specifically, we first encode three types of relationships among stations including spatial adjacency, functional similarity, and temporal pattern similarity into graphs. Then we design parallel encoding modules, which respectively incorporate attentive graph convolution operations into the Gated Recurrent Units (GRUs) to iteratively aggregate features from related stations with different graphs. Furthermore, augmented with an attention-based fusion unit, decoding modules with a similar structure to the encoding modules are designed to generate multi-step predictions for all stations. The experiments on two real-world datasets demonstrate the superior performance of our model beyond state-of-the-art methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []