A hybrid heuristic–genetic algorithm for task scheduling in heterogeneous processor networks

2011 
Efficient task scheduling on heterogeneous distributed computing systems (HeDCSs) requires the consideration of the heterogeneity of processors and the inter-processor communication. This paper presents a two-phase algorithm, called H2GS, for task scheduling on HeDCSs. The first phase implements a heuristic list-based algorithm, called LDCP, to generate a high quality schedule. In the second phase, the LDCP-generated schedule is injected into the initial population of a customized genetic algorithm, called GAS, which proceeds to evolve shorter schedules. GAS employs a simple genome composed of a two-dimensional chromosome. A mapping procedure is developed which maps every possible genome to a valid schedule. Moreover, GAS uses customized operators that are designed for the scheduling problem to enable an efficient stochastic search. The performance of each phase of H2GS is compared to two leading scheduling algorithms, and H2GS outperforms both algorithms. The improvement in performance obtained by H2GS increases as the inter-task communication cost increases.► The development of a deterministic-stochastic algorithm (H2GS) for task scheduling. ► H2GS creates high quality schedules for heterogeneous distributed computing systems. ► The performance of H2GS surpasses two of the best existing scheduling algorithms. ► H2GS provides a practical scheduler for applications with intensive communications. ► The two-phase nature of H2GS can be employed to meet the user requirements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []