BOOMERANG: Exploiting the Semantic Gap in Trusted Execution Environments

2017 
In the past decade, we have come to rely on computers for various safety and security-critical tasks, such as securing our homes, operating our vehicles, and controlling our finances. To facilitate these tasks, chip manufacturers have begun including trusted execution environments (TEEs) in their processors, which enable critical code (e.g., cryptographic functions) to run in an isolated hardware environment that is protected from the traditional operating system (OS) and its applications. While code in the untrusted environment (e.g., Android or Linux) is forbidden from accessing any memory or state within the TEE, the code running in the TEE, by design, has unrestricted access to the memory of the untrusted OS and its applications. However, due to the isolation between these two environments, the TEE has very limited visibility into the untrusted environment s security mechanisms (e.g., kernel vs. application memory).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []