FAIR: Quality-Aware Federated Learning with Precise User Incentive and Model Aggregation

2021 
Federated learning enables distributed learning in a privacy-protected manner, but two challenging reasons can affect learning performance significantly. First, mobile users are not willing to participate in learning due to computation and energy consumption. Second, with various factors (e.g., training data size/quality), the model update quality of mobile devices can vary dramatically, inclusively aggregating low-quality model updates can deteriorate the global model quality. In this paper, we propose a novel system named FAIR, i.e., Federated leArning with qualIty awaReness. FAIR integrates three major components: 1) learning quality estimation: we leverage historical learning records to estimate the user learning quality, where the record freshness is considered and the exponential forgetting function is utilized for weight assignment; 2) quality-aware incentive mechanism: within the recruiting budget, we model a reverse auction problem to encourage the participation of high-quality learning users, and the method is proved to be truthful, individually rational, and computationally efficient; and 3) model aggregation: we devise an aggregation algorithm that integrates the model quality into aggregation and filters out non-ideal model updates, to further optimize the global learning model. Based on real-world datasets and practical learning tasks, extensive experiments are carried out to demonstrate the efficacy of FAIR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []