A Scalable Security Protocol for Intravehicular Controller Area Network

2021 
Intravehicular communication relies on controller area network (CAN) protocol to deliver messages and instructions among different electronic control units (ECU). Unfortunately, inherent defects in CAN include the absence of confidentiality and integrity mechanism, enabling adversaries to launch attacks from wired or wireless interfaces. Although various CAN cryptographic protocols have been proposed for entity authentication and secure communication, the redundancy in the key establishment phase weakens their availability in large-scale CAN. In this paper, we propose a scalable security protocol suite for intravehicular networks and reduce the communication costs significantly. A new type of attack, suspension attack, is identified for the existing protocols and mitigated in our protocol by leveraging a global counter scheme. We formally verify the security properties of the proposed protocol suite through the AVISPA tool. The simulation results indicate that the communication and computation efficiency are improved in our protocol.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []