Reverse AD at Higher Types: Pure, Principled and Denotationally Correct

2021 
We show how to define forward- and reverse-mode automatic differentiation source-code transformations or on a standard higher-order functional language. The transformations generate purely functional code, and they are principled in the sense that their definition arises from a categorical universal property. We give a semantic proof of correctness of the transformations. In their most elegant formulation, the transformations generate code with linear types. However, we demonstrate how the transformations can be implemented in a standard functional language without sacrificing correctness. To do so, we make use of abstract data types to represent the required linear types, e.g. through the use of a basic module system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []