Accelerating mini-batch SARAH by step size rules
2021
StochAstic Recursive grAdient algoritHm (SARAH), originally proposed for convex optimization and also proven to be effective for general nonconvex optimization, has received great attention because of its simple recursive framework for updating stochastic gradient estimates. The performance of SARAH significantly depends on the choice of the step size sequence. However, SARAH and its variants often manually select a best-tuned step size, which is time consuming in practice. Motivated by this gap, we propose a variant of the Barzilai-Borwein (BB) method, referred to as the Random Barzilai-Borwein (RBB) method, to determine the step size for SARAH in the mini-batch setting, leading to a new SARAH method: MB-SARAH-RBB. We prove that MB-SARAH-RBB converges linearly in expectation for strongly convex objective functions. Moreover, we analyze the gradient complexity of MB-SARAH-RBB and show that it is better than the original method. To further confirm the efficacy of the RBB method, we propose the MB-SARAH+-RBB method, by incorporating it into the MB-SARAH + method. Numerical experiments on standard data sets indicate that our proposed methods outperform or match state-of-the-art algorithms.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI