Architect: A tool for aiding the reconstruction of high-quality metabolic models through improved enzyme annotation

2022 
Constraint-based modeling is a powerful framework for studying cellular metabolism, with applications ranging from predicting growth rates and optimizing production of high value metabolites to identifying enzymes in pathogens that may be targeted for therapeutic interventions. Results from modeling experiments can be affected at least in part by the quality of the metabolic models used. Reconstructing a metabolic network manually can produce a high-quality metabolic model but is a time-consuming task. At the same time, current methods for automating the process typically transfer metabolic function based on sequence similarity, a process known to produce many false positives. We created Architect, a pipeline for automatic metabolic model reconstruction from protein sequences. First, it performs enzyme annotation through an ensemble approach, whereby a likelihood score is computed for an EC prediction based on predictions from existing tools; for this step, our method shows both increased precision and recall compared to individual tools. Next, Architect uses these annotations to construct a high-quality metabolic network which is then gap-filled based on likelihood scores from the ensemble approach. The resulting metabolic model is output in SBML format, suitable for constraints-based analyses. Through comparisons of enzyme annotations and curated metabolic models, we demonstrate improved performance of Architect over other state-of-the-art tools, notably with higher precision and recall on the eukaryote C. elegans and when compared to UniProt annotations in two bacterial species. Code for Architect is available at https://github.com/ParkinsonLab/Architect. For ease-of-use, Architect can be readily set up and utilized using its Docker image, maintained on Docker Hub.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []