Deep Generative Model Using Unregularized Score for Anomaly Detection With Heterogeneous Complexity

2022 
Accurate and automated detection of anomalous samples in an image dataset can be accomplished with a probabilistic model. Such images have heterogeneous complexity, however, and a probabilistic model tends to overlook simply shaped objects with small anomalies. The reason is that a probabilistic model assigns undesirable lower likelihoods to complexly shaped objects, which are nevertheless consistent with the current set standards. This difficulty is critical, especially for a defect detection task, where the anomaly can be a small scratch or grime. To overcome this difficulty, we propose an unregularized score for deep generative models (DGMs). We found that the regularization terms of the DGMs considerably influence the anomaly score depending on the complexity of the samples. By removing these terms, we obtain an unregularized score, which we evaluated on toy datasets, two in-house manufacturing datasets, and on open manufacturing and medical datasets. The empirical results demonstrate that the unregularized score is robust to the apparent complexity of given samples and detects anomalies selectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []