Predicting Human Mobility via Graph Convolutional Dual-attentive Networks

2022 
Human mobility prediction is of great importance for various applications such as smart transportation and personalized recommender systems. Although many traditional pattern-based methods and deep models ($e.g.,$ recurrent neural networks) based methods have been developed for this task, they essentially do not well cope with the sparsity and inaccuracy of trajectory data and the complicated high-order nature of the sequential dependency, which are typical challenges in mobility prediction. To solve the problems, this paper proposes a novel framework named G raph C onvolutional D ual-a ttentive N etworks (GCDAN), which consists of two modules: spatio-temporal embedding and trajectory encoder-decoder. The first module employs a bidirectional diffusion graph convolution to preserve the spatial dependency in the location embedding. The second module employs a dual-attentive mechanism based on a Sequence to Sequence architecture to effectively extract the long-range sequential dependency within a trajectory and the correlation between different trajectories for predictions. Extensive experiments on three real-world datasets show that GCDAN achieves significant performance gain compared with state-of-the-art baselines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []