Neuromechanical Model-Based Adaptive Control of Bilateral Ankle Exoskeletons: Biological Joint Torque and Electromyogram Reduction Across Walking Conditions

2022 
To enable the broad adoption of wearable robotic exoskeletons in medical and industrial settings, it is crucial they can adaptively support large repertoires of movements. We propose a new human-machine interface to simultaneously drive bilateral ankle exoskeletons during a range of “unseen” walking conditions and transitions that were not used for establishing the control interface. The proposed approach used person-specific neuromechanical models to estimate biological ankle joint torques in real-time from measured electromyograms (EMGS) and joint angles. We call this “neuromechanical model-based control” (NMBC). NMBC enabled six individuals to voluntarily control a bilateral ankle exoskeleton across six walking conditions, including all intermediate transitions, i.e., two walking speeds, each performed at three ground elevations. A single subject case-study was carried out on a dexterous locomotion tasks involving moonwalking. NMBC always enabled reducing biological ankle torques, as well as eight ankle muscle EMGs both within (22% torque;12% EMG) and between walking conditions (24% torque; 14% EMG) when compared to non-assisted conditions. Torque and EMG reductions in novel walking conditions indicated that the exoskeleton operated symbiotically, as an exomuscle controlled by the operator.s neuromuscular system. This opens new avenues for the systematic adoption of wearable robots as part of out-of-the-lab medical and occupational settings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []