Shattered Chain of Trust: Understanding Security Risks in Cross-Cloud IoT Access Delegation

2020 
IoT clouds facilitate the communication between IoT devices and users, and authorize users’ access to their devices. In this paradigm, an IoT device is usually managed under a particular IoT cloud designated by the device vendor, e.g., Philips bulbs are managed under Philips Hue cloud. Today’s mainstream IoT clouds also support device access delegation across different vendors (e.g., Philips Hue, LIFX, etc.) and cloud providers (e.g., Google, IFTTT, etc.): for example, Philips Hue and SmartThings clouds support to delegate device access to another cloud such as Google Home, so a user can manage multiple devices from different vendors all through Google Home. Serving this purpose are the IoT delegation mechanisms developed and utilized by IoT clouds, which we found are heterogeneous and ad-hoc in the wild, in the absence of a standardized delegation protocol suited for IoT environments. In this paper, we report the first systematic study on real-world IoT access delegation, based upon a semi-automatic verification tool we developed. Our study brought to light the pervasiveness of security risks in these delegation mechanisms, allowing the adversary (e.g., Airbnb tenants, former employees) to gain unauthorized access to the victim’s devices (e.g., smart locks) or impersonate the devices to trigger other devices. We confirmed the presence of critical security flaws in these mechanisms through end-to-end exploits on them, and further conducted a measurement study. Our research demonstrates the serious consequences of these exploits and the security implications of the practice today for building these mechanisms. We reported our findings to related parties, which acknowledged the problems. We further propose principles for developing more secure cross-cloud IoT delegation services, before a standardized solution can be widely deployed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []