On Energy Consumption of Airship-Based Flying Base Stations Serving Mobile Users

2022 
Flying base stations (FlyBSs) can serve space-time varying heterogeneous traffic in the areas, where a deployment of conventional static base stations is uneconomical or unfeasible. We focus on energy consumption of the FlyBSs serving moving users. For such scenario, rotary-wing FlyBSs are not efficient due to a high energy consumption while hovering at a fixed location. Hence, we consider airship-based FlyBSs. For these, we derive an analytical relation between the sum capacity of the users and the energy spent for flying. We show theoretical bounds of potential energy saving with respect to a relative sum capacity guarantee to the users for single FlyBS. Then, we generalize the problem towards multiple FlyBSs and we propose an algorithm minimizing the energy consumption of the FlyBSs serving moving users under a constraint on the minimum relative sum capacity guarantee. The proposed algorithm reduces the energy consumed by the airship-based FlyBSs for flying by dozens of percent at a cost of only a marginal and controlled degradation in the sum capacity. For example, if the degradation in the sum capacity up to 1% is allowed, 55.4%, 67.5%, and 90.7% of the energy is saved if five, three, and one FlyBSs are deployed, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []