SPSTracker: Sub-Peak Suppression of Response Map for Robust Object Tracking

2020 
Modern visual trackers usually construct online learning models under the assumption that the feature response has a Gaussian distribution with target-centered peak response. Nevertheless, such an assumption is implausible when there is progressive interference from other targets and/or background noise, which produce sub-peaks on the tracking response map and cause model drift. In this paper, we propose a rectified online learning approach for sub-peak response suppression and peak response enforcement and target at handling progressive interference in a systematic way. Our approach, referred to as SPSTracker, applies simple-yet-efficient Peak Response Pooling (PRP) to aggregate and align discriminative features, as well as leveraging a Boundary Response Truncation (BRT) to reduce the variance of feature response. By fusing with multi-scale features, SPSTracker aggregates the response distribution of multiple sub-peaks to a single maximum peak, which enforces the discriminative capability of features for robust object tracking. Experiments on the OTB, NFS and VOT2018 benchmarks demonstrate that SPSTrack outperforms the state-of-the-art real-time trackers with significant margins1
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []