Bacterial microcompartments linked to the flavin-based extracellular electron transfer drives anaerobic ethanolamine utilization in Listeria monocytogenes

2020 
Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from phospholipids present in cell membranes. EA catabolism is suggested to occur in so-called bacterial microcompartments (BMCs) and activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that activation of eut in Listeria monocytogenes is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent. Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics and electron microscopy. First, we show B12-induced activation of the eut operon in L. monocytogenes coupled to uptake and utilization of EA thereby enabling growth. Next, we demonstrate BMC formation in conjunction to EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP generating acetate branch causes an apparent redox imbalance due to reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMC to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild type, a BMC mutant and a EET mutant, we demonstrate an interaction between BMC and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of anaerobic BMC-dependent EA catabolism in the physiology of L. monocytogenes, with a crucial role for the flavin-based EET system in redox balancing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []