In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate

2011 
Calcium-deficient hydroxyapatite (Ca-def-HAP) coatings on titanium alloy (Ti6Al4V) substrates are elaborated by pulsed electrodeposition. In vitro dissolution/precipitation process is investigated by immersion of the coated substrate into Dulbecco’s Modified Eagle Medium (DMEM) from 1 h to 28 days. Calcium and phosphorus concentrations evolution in the biological liquid are determined by Induced Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for each immersion time. Physical and chemical characterizations of the coating are performed by scanning electron microscopy (SEM) associated to Energy Dispersive X-ray Spectroscopy (EDXS) for X-ray microanalysis. Surface modifications are investigated by an original method based on the three-dimensional reconstruction of SEM images (3D-SEM). Moreover, corrosion measurements are carried out by potentiodynamic polarization experiments. The results show that the precipitation rate of the Ca-def HAP coating is more pronounced in comparison with that of stoichiometric hydroxyapatite (HAP) used as reference. The precipitated bone-like apatite coating is thick, homogenous and exhibits an improved link to the substrate. Consequently, the corrosion behaviour of the elaborated prosthetic material is improved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    33
    Citations
    NaN
    KQI
    []