Big elements in irreducible linear groups

2014 
Let V be a linear space over a field K of dimension n > 1, and let \({G \leq {\rm GL}(V)}\) be an irreducible linear group. In this paper we prove that the group G contains an element g such that rank \({(g - \alpha E_{n}) \geq \frac{n}{2}}\) for every \({\alpha \in K}\), where En is the identity operator on V. This estimate is sharp for any \({n = 2^{m}}\). The existence of such an element implies that the conjugacy class of G in GL(V) intersects the big Bruhat cell \({B\dot{w}_{0}B}\) of GL(V) non-trivially (here B is a fixed Borel subgroup of G). The latter fact is equivalent to the existence of a complete flag \({\mathfrak{F}}\) such that the flags \({g(\mathfrak{F}), \mathfrak{F}}\) are in general position for some g ∈ G.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []