Denitrification is the main microbial N loss pathway on the Qinghai-Tibet Plateau above an elevation of 5000 m

2019 
Abstract Soil nitrogen (N) deficiency is the major factor contributing to low primary productivity on the Qinghai-Tibet Plateau. However, most of our understanding of N cycling is still based on human disturbed environments, and the microbial mechanisms governing N loss in low primary productivity environment remain unclear. This study explores three microbial N loss pathways in eight wetland and dryland soil profiles from the Qinghai-Tibet Plateau, at an elevation of above 5000 m with little human activity, using 15N isotopic tracing slurry technology, quantitative PCR, and high-throughput sequencing. No denitrifying anaerobic methane oxidation was detected. Anammox occurred in two of the wetland (n = 4) and dryland (n = 4) soil profiles, while denitrification widely occurred and was the dominant N loss pathway in all samples. Where denitrification and anammox co-occurred, both abundance and activity were higher in wetland than in dryland soils and higher in surface than in subsurface soils. In comparison with non-anammox sites, nitrate levels initiate anammox-related N cycling. High-throughput sequencing and network analysis of nirK, nirS, nosZ, and hzsB gene communities showed that Bradyrhizobiaceae (a family of rhizobia) may play a dominant role in N loss pathways in this region. Given the geological evolution and relatively undisturbed habitat, these findings strongly suggest that denitrification is the dominant N loss pathway in terrestrial habitats of the Qing-Tibet Plateau with minimal anthropogenic activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    6
    Citations
    NaN
    KQI
    []