Numerical Study on Indoor Dispersion of Radon Emitted from Building Materials

2014 
Growing concerns about harmful influence of radon on human body, many efforts are being made to decrease indoor radon concentration in advanced countries. To develop an indoor radon reduction technology, it is necessary to develop a technology to predict and evaluate indoor inflow and emission of radon. In line with that, the present study performed computational modelling of indoor dispersion of radon emitted from building materials. The computational model was validated by comparing computational results with analytical results. This study employed CFD (Computational Fluid Dynamics) analysis to evaluate the radon concentration and the airflow characteristics. Air change rate and ventilation condition were changed and several building materials having different radon emission characteristics were considered. From the results, the indoor radon concentration was high at flow recirculation zones and inversely proportional to the air change rate. For the different building materials, the indoor radon concentration was found to be highest in cement bricks, followed by eco-carats and plaster boards in the order. The findings from this study will be used as a method for selecting building materials and predicting and evaluating the amount of indoor radon in order to reduce indoor radon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    3
    Citations
    NaN
    KQI
    []