Precision position control of ionic polymer metal composite

2004 
A submunition having an infrared detector disposed in a nose portion thereof, the detector having a narrow angularly-displaced field of view, and vanes for causing the submunition to rotate at an essentially constant rate while in flight, thus to cause the infrared detector to scan a target area and to detect the presence of a target having a selected higher temperature than the background infrared radiation. The submunition includes a small explosive charge sheet disposed on its outer surface and concentrated in one area, and firing pulse generation means for firing the charge. When the infrared detector scans past a detectable target within the target area, it produces a detection signal that triggers a firing pulse from the firing pulse generation means, thereby firing the explosive charge to create a lateral impulse or offset of the submunition. Timing means is provided to cause the impulse to be produced in the exact direction to correct the terminal trajectory of the submunition to intercept the detected target, so that the warhead carried by the submunition can cripple or destroy the target. This novel correctable-trajectory submunition is therefore seen to be a low-cost device having high kill probability when air-dropped in clusters, thereby providing very high cost effectiveness.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []