Electrophysiological properties of human β-cell lines EndoC-βH1 and -βH2 conform with human β-cells

2017 
The electrophysiological and secretory properties of the human β-cell lines EndoC-βH1 and EndoC-βH2 were investigated. Both cell lines respond to glucose (6-20mM) with 2- to 3-fold stimulation of insulin secretion, an effect that was mimicked by tolbutamide (0.2mM) and reversed by diazoxide (0.5mM). Glucose-induced insulin release correlated with an elevation of [Ca2+]i, membrane depolarization and increased action potential firing. KATP channel activity at 1mM glucose is low and increasing glucose to 6 or 20mM reduced KATP channel activity to the same extent as application of the KATP channel blocker tolbutamide (0.2mM). The upstroke of the action potentials in EndoC-βH1 and -βH2 cells observed at high glucose principally reflects activation of L- and P/Q-type Ca2+ channels with some small contribution of TTX-sensitive Na+ channels. Action potential repolarization involves activation of voltage-gated Kv2.2 channels and large-conductance Ca2+-activated K+ channels. Exocytosis (measured by measurements of membrane capacitance) was triggered by membrane depolarizations >10ms to membrane potentials above -30mV. Both cell lines were well-granulated (6,000-15,000 granules/cell) and granules consisted of a central insulin core surrounded by a clear halo. We conclude that the EndoC-βH1 and -βH2 cells share many features of primary human β-cells and that they represent a useful experimental model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []