Orbital-collaborative Charge Density Wave in Monolayer VTe2

2020 
Charge density waves in transition metal dichalcogenides have been intensively studied for their close correlation with Mott insulator, charge-transfer insulator, and superconductor. VTe2 monolayer recently comes into sight because of its prominent electron correlations and the mysterious origin of CDW orders. As a metal of more than one type of charge density waves, it involves complicated electron-electron and electron-phonon interactions. Through a scanning tunneling microscopy study, we observed triple-Q 4-by-4 and single-Q 4-by-1 modulations with significant charge and orbital separation. The triple-Q 4-by-4 order arises strongly from the p-d hybridized states, resulting in a charge distribution in agreement with the V-atom clustering model. Associated with a lower Fermi level, the local single-Q 4-by-1 electronic pattern is generated with the p-d hybridized states remaining 4-by-4 ordered. In the spectroscopic study, orbital- and atomic- selective charge-density-wave gaps with the size up to ~400 meV were resolved on the atomic scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    4
    Citations
    NaN
    KQI
    []