Unsaturated fatty acid-tuned assembly of photosensitizers for enhanced photodynamic therapy via lipid peroxidation

2021 
Photodynamic therapy (PDT) destroys tumor cells mainly through singlet oxygen (1O2) generated by light-irradiated photosensitizers (PSs). However, the fleeting half-life of 1O2 greatly impairs PDT efficacy. Herein, we propose an unreported unsaturated fatty acid (UFA)-assisted PS co-assembly strategy to address this problem. Three UFAs, namely, oleic acid (OA), linoleic acid (LA) and linolenic acid (LNA), are capable of co-assembling with 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) into uniform nanoparticles. Under irradiation, TAPP produces 1O2, which directly attacks tumor cells and simultaneously oxidizes UFAs to generate lipid hydroperoxides with sustained damage. Interestingly, the unsaturation degree of UFAs is not only related to their peroxidation rate but also has a remarkable impact on the intracellular TAPP release characteristic of the nanoparticles (NPs). The TAPP-LA NPs could release the cargo rapidly and produce the highest lipid peroxidation and reactive oxygen species levels upon irradiation. Such a unique finding sheds new light on UFA-based combination applications for enhanced photodynamic efficacy by boosting lipid peroxidation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []