Atomically Dispersed Ni–Ru–P Interface Sites for High-Efficiency pH-Universal Electrocatalysis of Hydrogen Evolution

2020 
Abstract Designing catalysts with specific active sites is a crucial yet challenging task for high-efficiency electrocatalysis of hydrogen evolution reaction (HER). In this paper, we report the construction of atomically dispersed Ni–Ru–P interface sites (ISs) on Ru single-atomic sites doped nickel phosphide nanoparticles (Ru SAs–Ni2P NPs) with high-efficiency HER performances in a wide pH range. Especially, the as-constructed atomically dispersed Ni–Ru–P ISs on 2.20 wt% Ru SAs–Ni2P show a highly active for catalyzing HER with high turnover frequencies at low overpotential, featuring a high mass activity as well as a superior stability under alkaline conditions. Based on the operando X-ray absorption spectroscopy experiments indicate that the Ni–Ru–P ISs plays an active role in the process of HER and participates in the catalytic process. Density functional theory calculations exhibit that the strong interaction in the atomically dispersed Ni–Ru–P ISs results in an optimization the hydrogen adsorption energy and an elevated hydroxyl adsorption energy, both of which help improve the HER performances. Notably, this work provides a new perspective for the design of high-efficiency HER electrocatalysts by constructing atomically dispersed ISs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    21
    Citations
    NaN
    KQI
    []