Knowledge engineering for adverse drug event prevention

2012 
Graphical abstractDisplay Omitted Highlights? A systematic, knowledge-based approach for ADE prevention is introduced. ? We designed and developed a uniform, sustainable and exploitable knowledge framework. ? An application-specific knowledge model has been defined. ? We elaborated on knowledge contextualization to reinforce the value of the framework. ? The framework constitutes the basis for developing CDSSs at the point of care. The primary aim of this work was the development of a uniform, contextualized and sustainable knowledge-based framework to support adverse drug event (ADE) prevention via Clinical Decision Support Systems (CDSSs). In this regard, the employed methodology involved first the systematic analysis and formalization of the knowledge sources elaborated in the scope of this work, through which an application-specific knowledge model has been defined. The entire framework architecture has been then specified and implemented by adopting Computer Interpretable Guidelines (CIGs) as the knowledge engineering formalism for its construction. The framework integrates diverse and dynamic knowledge sources in the form of rule-based ADE signals, all under a uniform Knowledge Base (KB) structure, according to the defined knowledge model. Equally important, it employs the means to contextualize the encapsulated knowledge, in order to provide appropriate support considering the specific local environment (hospital, medical department, language, etc.), as well as the mechanisms for knowledge querying, inference, sharing, and management. In this paper, we present thoroughly the establishment of the proposed knowledge framework by presenting the employed methodology and the results obtained as regards implementation, performance and validation aspects that highlight its applicability and virtue in medication safety.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    16
    Citations
    NaN
    KQI
    []