Fundamental aspects of field-amplified electrokinetic injection of cations for enantioselective capillary electrophoresis with sulfated cyclodextrins as selectors

2018 
Abstract Head-column field-amplified sample stacking of cations from a low conductivity sample followed by enantiomeric separation using negatively charged chiral selectors was studied experimentally and with computer simulation. Aspects investigated include the direct electrokinetic injection of the analytes into the background electrolyte, the use of a selector free buffer plug, the contribution of complexation within the buffer plug and the application of an additional water plug between sample and buffer plug. Attention was paid for changes of ionic strength which is known to have a significant impact on complexation and thus effective mobility. Racemic methadone was selected as a model compound, randomly substituted sulfated β-cyclodextrin as chiral selector and phosphate buffers (pH 6.3) for the background electrolyte and the buffer plug. Results confirm that the buffer plug is providing a spacer between cationic analytes and the negatively charged selector during electrokinetic injection. Simulation predicts the required length and composition of the plug for a given injection time to avoid an interference with the selector. A short water plug added between the low conductivity sample and a high conductivity buffer plug is demonstrated to provide best conditions to achieve high sensitivity in enantioselective drug assays with sulfated cyclodextrins as selectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    12
    Citations
    NaN
    KQI
    []