Degradation of potential barriers in ZnO-based chip varistors due to electrostatic discharge

2012 
Degradation of potential barriers in ZnO-based varistors due to the electrostatic discharge (ESD) was investigated using scanning probe microanalysis and capacitance-time and isothermal capacitance transient spectroscopies. Pr6O11-ZnO (Pr-ZnO) varistors exhibit excellent ESD withstand capability compared with Bi2O3-ZnO (Bi-ZnO) varistors. After the application of ESD, asymmetrically degraded double Schottky barriers were observed in both Pr-ZnO and Bi-ZnO varistors, and the Schottky barrier in Bi-ZnO was found to be destroyed. The potential barriers of both types of varistors can respond to an ESD pulse, whose rise time is ∼1 ns, but after application of the ESD pulse, the Bi-ZnO varistor takes more time to recover its initial capacitance than does the Pr-ZnO varistor. Such difference in the transient behaviors of potential barriers is attributed to differences in the energy and distribution of interfacial states of Pr-ZnO and Bi-ZnO varistors. Experimental results clearly indicated a strong correlation b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []