Formation, growth, and saturation of dry holes in thick liquid films under vapor-mediated Marangoni effect

2019 
Films and drops of liquids can change their shapes and move under the spatial gradient of surface tension. A remote volatile liquid of relatively low surface tension can induce such flows because its vapor locally lowers the surface tension of the films and drops. Here, we show that aqueous liquid films thicker than approximately 100 µm can be punctured to immediately expose a dry hole by an overhanging isopropyl alcohol drop, which is attributed to the vapor-mediated Marangoni effect. We construct and corroborate scaling laws to predict the film dynamics, considering the balance of the driving capillary force and resisting viscous and hydrostatic forces as well as the contact angle of the alcohol-adsorbed solid surface. This remote scheme to induce and sustain changes of liquid morphology can be applied for fluid sculpture and patterning for industrial and artistic practices.Films and drops of liquids can change their shapes and move under the spatial gradient of surface tension. A remote volatile liquid of relatively low surface tension can induce such flows because its vapor locally lowers the surface tension of the films and drops. Here, we show that aqueous liquid films thicker than approximately 100 µm can be punctured to immediately expose a dry hole by an overhanging isopropyl alcohol drop, which is attributed to the vapor-mediated Marangoni effect. We construct and corroborate scaling laws to predict the film dynamics, considering the balance of the driving capillary force and resisting viscous and hydrostatic forces as well as the contact angle of the alcohol-adsorbed solid surface. This remote scheme to induce and sustain changes of liquid morphology can be applied for fluid sculpture and patterning for industrial and artistic practices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    8
    Citations
    NaN
    KQI
    []