Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions

2019 
We report on a high convergence ratio liquid layer capsule implosion performed on the National Ignition Facility and contrast it to two previously reported layered implosions, in order to better understand how the capsule design impacts the hydrodynamic stability properties of implosions. Three implosions were performed with similar convergence ratios, fuel entropy, in-flight aspect ratios, and unablated shell mass; these qualities are important for determining hydrodynamic stability. Nevertheless, while two of these implosions exhibited robustness to asymmetries, including our recent experiment that had abnormally large amplitude long-wavelength capsule asymmetries, and produced more than 80% or the yield predicted by one-dimensional (1D) simulations, which do not account for the impacts of hydrodynamic instabilities, the third implosion produced only 14% of the yield from a 1D simulation. We perform a detailed computational analysis of these three shots, which suggests that the combination of several la...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    15
    Citations
    NaN
    KQI
    []