Novel 3D modeling methods for virtual fabrication and EDA compatible design of MEMS via parametric libraries

2010 
This paper provides a brief summary of the state-of-the-art of MEMS-specific modeling techniques and describes the validation of new models for a parametric component library. Two recently developed 3D modeling tools are described in more detail. The first one captures a methodology for designing MEMS devices and simulating them together with integrated electronics within a standard electronic design automation (EDA) environment. The MEMS designer can construct the MEMS model directly in a 3D view. The resulting 3D model differs from a typical feature-based 3D CAD modeling tool in that there is an underlying behavioral model and parametric layout associated with each MEMS component. The model of the complete MEMS device that is shared with the standard EDA environment can be fully parameterized with respect to manufacturing- and design-dependent variables. Another recent innovation is a process modeling tool that allows accurate and highly realistic visualization of the step-by-step creation of 3D micro-fabricated devices. The novelty of the tool lies in its use of voxels (3D pixels) rather than conventional 3D CAD techniques to represent the 3D geometry. Case studies for experimental devices are presented showing how the examination of these virtual prototypes can reveal design errors before mask tape out, support process development before actual fabrication and also enable failure analysis after manufacturing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    29
    Citations
    NaN
    KQI
    []