AIU-Net: An Efficient Deep Convolutional Neural Network for Brain Tumor Segmentation

2021 
Automatic and accurate segmentation of brain tumors plays an important role in the diagnosis and treatment of brain tumors. In order to improve the accuracy of brain tumor segmentation, an improved multimodal MRI brain tumor segmentation algorithm based on U-net is proposed in this paper. In the original U-net, the contracting path uses the pooling layer to reduce the resolution of the feature image and increase the receptive field. In the expanding path, the up sampling is used to restore the size of the feature image. In this process, some details of the image will be lost, leading to low segmentation accuracy. This paper proposes an improved convolutional neural network named AIU-net (Atrous-Inception U-net). In the encoder of U-net, A-inception (Atrous-inception) module is introduced to replace the original convolution block. The A-inception module is an inception structure with atrous convolution, which increases the depth and width of the network and can expand the receptive field without adding additional parameters. In order to capture the multiscale features, the atrous spatial pyramid pooling module (ASPP) is introduced. The experimental results on the BraTS (the multimodal brain tumor segmentation challenge) dataset show that the dice score obtained by this method is 0.93 for the enhancing tumor region, 0.86 for the whole tumor region, and 0.92 for the tumor core region, and the segmentation accuracy is improved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []