Carbon nanofiber-supported tantalum oxides as durable catalyst for the oxygen evolution reaction in alkaline media

2021 
Abstract Active and durable electrocatalysts for the oxygen evolution reaction (OER), capable of replacing noble metal catalysts, are required to develop efficient and competitive devices within the frame of the water electrolysis technology for hydrogen production. In this work, we have investigated tantalum based catalysts supported on carbon nanofibers (CNF) for the first time. The effect of CNF characteristics and the catalyst annealing temperature on the electrochemical response for the OER have been analyzed in alkaline environment using a rotating ring disc electrode (RRDE). The best OER activity and oxygen efficiency were found with a highly graphitic CNF, despite its lower surface area, synthesized at 700 °C, and upon a catalyst annealing temperature of 800 °C. The ordering degree of carbon nanofibers favors the production of oxygen in combination with a low oxygen content in tantalum oxides. The most active catalyst exhibited also an excellent durability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    2
    Citations
    NaN
    KQI
    []