Temporal Requirements of Heat Shock Factor-1 for Longevity Assurance

2012 
Reducing the activity of the Insulin/IGF-1 Signaling pathway (IIS) modifies development, elevates stress resistance, protects from toxic protein aggregation (proteotoxicity) and extends lifespan of worms, flies and mice. In the nematode Caenorhabditis elegans (C. elegans), lifespan extension by IIS reduction is entirely dependent upon the activity of the transcription factors DAF-16 and the Heat Shock Factor-1 (HSF-1). While DAF-16 determines lifespan exclusively during early adulthood it is required for proteotoxicity protection also during late adulthood. In contrast, HSF-1 protects from proteotoxicity during larval development. Despite the critical requirement for HSF-1 for lifespan extension the temporal requirements for this transcription factor as a lifespan determinant are unknown. To establish the temporal requirements of HSF-1 for longevity assurance we conditionally knocked down hsf-1 during larval development and adulthood of C. elegans and found that unlike daf-16, hsf-1 is foremost required for lifespan determination during early larval development, required for a lesser extent during early adulthood and has small effect on longevity also during late adulthood. Our findings indicate that early developmental events affect lifespan and suggest that HSF-1 sets during development the conditions that enable DAF-16 to promote longevity during reproductive adulthood. This study proposes a novel link between HSF-1 and the longevity functions of the IIS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    46
    Citations
    NaN
    KQI
    []