Conformational and Dynamic Changes of Yersinia Protein Tyrosine Phosphatase Induced by Ligand Binding and Active Site Mutation and Revealed by H/D Exchange and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry†

1998 
Protein tyrosine phosphatases (PTPase) play important roles in the intracellular signal transduction pathways that regulate cell transformation, growth, and proliferation. Here, solvent accessibility is determined for backbone amide protons from various segments of wild-type Yersinia PTPase in the presence or absence of 220 μM vanadate, a competitive inhibitor, as well as an active site mutant in which the essential cysteine 403 has been replaced by serine (C403S). The method consists of solution-phase H/D exchange, followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform ion cyclotron resonance mass spectrometry. Proteolytic segments spanning ∼93.5% of the primary sequence are analyzed. Binding of vanadate reduces the H/D exchange rate throughout the protein, both for the WpD loop and for numerous other residues that are shielded when that loop is pulled down over the active site on binding of the inhibitor. The single active s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    64
    Citations
    NaN
    KQI
    []