Theoretical study on the mechanism for NH3BH3 reduction of ketones and imines
2013
In spite of a potential hydrogen storage material, ammonia borane (AB) was recently found to be a good hydrogenation reagent. It can reduce certain ketones to alcohols or borate esters, and imines to amines. The mechanisms of these reactions are not fully understood yet, and have been systematically studied using high-level CCSD(T) calculations in this work. We have validated theoretically that the forming of alcohols and amines undergoes concerted double-hydrogen transfer (DHT) mechanism. Furthermore, we predicted that the DHT process is facile for more general ketones and imines. For the borate ester formation, we found a pretty high barrier for the experimentally derived stepwise mechanism. Alternatively, we propose that the reaction starts with the DHT process to form alcohol and NH2BH2, followed by alcoholysis of NH2BH2 to form the first B–O bond. This mechanism is in good agreement with the current experimental facts, and also explains why ketone reduction affords different products at different con...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
9
Citations
NaN
KQI