Accuracy of Multi-echo Dixon Sequence in Quantification of Hepatic Steatosis

2020 
: Objective Today, a biopsy is the gold standard in the diagnosis of non-alcoholic fatty liver. However, a biopsy is an invasive technique, limited to the sample taken, and it may lead to misdiagnosis. Therefore, novel noninvasive options are needed. The objective of this study was to investigate the accuracy of magnetic resonance (MR) Dixon sequence and elastography using magnetic resonance spectroscopy (MRS) as a reference in the quantification of hepatic steatosis. Methods A total of 60 patients were included in the study. All patients underwent magnetic resonance imaging (MRI), MRS, and elastography in order to quantify hepatosteatosis. MRI and MRS imaging studies were performed using MR Dixon and high-speed T2-corrected multiple-echo 1H-MRS sequence (HISTO) sequences, respectively, in order to calculate proton density fat fraction (PDFF) values. Results The mean MRI-PDFF value with the MRS region of interest (ROI) was found as 9.4% ± 12.1%. The mean MRS-PDFF was found as 8.9% ± 11.3%. No statistically significant difference was found between MRS-PDFF and MRI-PDFF values measured in ROI (p < 0.005). The correlation between MRS-PDFF and MRI-PDFF was examined with Spearman's correlation analysis. Accordingly, there was an excellent correlation between MRS and MRI values measured in ROI (r ≥ 0.8, p < 0.001). Sensitivity, specificity, positive predictive value, and negative predictive value were calculated as 96%, 100%, 89.5%, and 92.6%, respectively, for MRI-PDFF in predicting hepatic steatosis for the same ROI localization with MRS. The optimum cut-off value of MRS-PDFF in predicting hepatic steatosis was found as 5.3% using the same ROI localization with MRS. Conclusion The results of this study indicated an excellent correlation between MRI-PDFF and MRS-PDFF. The multi-echo Dixon MRI technique seems a promising alternative method in the detection of non-alcoholic fatty liver disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []